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SUMMARY

The objective of this research is to develop practical design proce-
dures that can be used in conjunction with optimal digital control-
lers and estimators for future orbiting large space structural
systems. In practice, observational data used to verify the orienta-
tion and shape of large flexible systems will, in general, be col-
lected on a sampled basis (discrete-time data system). Random noise
is also included with such observational data. Systems which will
be designed to control both the overall orientation as well as the
shape of some of the subsystems (such as an antenna mesh form) must
function in the discrete-time domain. The aim of this research is
to develop methods that can be used to design linear quadratic regu-
lator (LQR) or linear quadratic Gaussian (LQG) controllers/
estimators for orbiting large flexible systems. The digital control
of an orbiting shallow shell antenna-type system, as well as flexi-
ble platform-type systems are examined in this report.
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1. INTRODUCTION

The purpose of this research is to study and develop the practical
methods of designing LQR and LQG digital controllers and estimators
for orbiting large space flexible structural systems.

A number of investigators[1-6) have considered the problem of
developing optimal control laws for large flexible orbiting systems
under the assumption that the state vector information would be ob-
served directly or that the state information could be estimated on
a continuous basis. In practice, however, the observational data,
in general, will most probabl be collected on a sampled basis i.e.
a discrete-time data system.H[-10) Sometimes the random noise which
is included in the observational data cannot be neglected. In this
case, the observational data must be treated as observational data
with random measurement noise. Therefore, it appears useful and
timely to study the control problem of orbiting large space structur-
al systems with discrete-time observational data and random measure-
ment noise.[11s 12]

The analysis and design of LQR digital controllers and LQG digital
controllers and estimators have been finished for a hypothetical
thin free-free long beam in orbit. The concepts of the degree of
controllability (observability which is a function of the controlla-
bility (observability) matrix M131 6 ] have been applied to solve the
problem of actuator and sensor placement. The closed-loop dynamics
of the LQR and LQG control system for a long, slender orbiting flexi-
ble beam have ben simulated. The design of the digital controllers
and estimators has been certified by simulation.

The aim of this reported research, for the period July 1988 - July
1989, is to develop methods that can be used to design linear quad-
ratic regulator (LQR) or linear quadratic Gaussian (LQG) control-
lers/estimators for orbiting space flexible antenna/reflector and
platform systems. The specific tasks reported are as follows:

(1) The analysis and design of the LQR and LQG digital controllers
and estimators for large space flexible shallow spherical shell
systems representative of orbiting reflector/antenna systems. A
paper based on this task has been accepted for presentation at the
40th International Astronautical Congress and is the basis for
Chapter 2 of this report.

(2) The development of three definitions of the degree of controlla-
bility (observability) which are based on the scalar measure of the
controllability (observability) matrix for discrete-time systems.
Their general properties, together with the simple physical and geo-
metrical interpretations for the fuel optimal control problem are
shown. The applications of these definitions for the actuator place-
ment problem of the orbiting shallow spherical shell system are
Illustrated for seven sample cases. A paper based on this task has
been presented at the 12th Biennial Conference on Mechanical Vibra-
tion and Noise and is the nucleus for Chapter 3 of this report.



(3) Modelling of large flexible orbiting platform control systems
and the analysis and design of LQR digital controllers for large
flexible orbiting platform systems. This is in progress and will be
the basis of a Mast r's thesis, currently under preparation. A
brief summary of this task is presented in Chapter 4 of this report.
It is intended that the Master's thesis will also be published as a
supplement to this volume.

(4) Finally, Chapter 5 will summarize some concluding statements
and follow~on plans for the continuation of this Beneral area of
research along te lines of our recent proposal[17] to WRDC.
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2. THE OPTIMAL LQG DIGITAL SHAPE AND ORIENTATION CONTROL OF AN

ORBITING SHALLOW SPHERICAL SHELL SYSTEM

2.1 Introduction

Future proposed space missions would involve large inherently
flexible systems for use in communications, radiometry, and In
electronic orbital based mail systems. The use of very large
shallow dish type structures to be employed as receivers/reflectors
for these missions has been suggested. In order to satisfy mission
requirements control of the shape as well as the overall orientation
will often be required. The proposed paper is devoted to a study of
the LQG digital optimal control of the shape and orientation for an
orbiting shallow spherical shell system.

The dynamical system equations and deterministic control of the
three-dimensional shallow spherical shell in orbit, in which the
yaw, roll and pitch attitude angles of the undeformed shell and six
flexible modal parameters are modeled, have been studied.[1, 18-19]
In this paper the LQG digital optimal control technique will be
applied to the shape and attitude control of shallow spherical shell
systems. In order to realize estimation and control, the
mathematical models for the actuators and sensors are developed, in
which up to 12 jet actuators are used for control of the attitude
and shape of the shell. For observation, two sun sensors, two earth
horizon sensors and six displacement sensors are assumed to be used
for measuring the attitude and displacement of the deformed shell.

As for the suboptimal digital LQG problem[12] we are not only
interested in the separate design of both the controller and
estimator, but more interested in determining the influence of the
different combinations of the controller and observer pole locations
on the estimate and control process and the best combination of
controller and observer pole locations.

In addition, the problem of actuator placement is discussed by means
of the concept of the degree of controllability.[ 2 0] The best
arrangement of the locations for the actuators will be discussed.

Finally, the simulations certify the analysis and design of the
digital optimal controllers and estimations.

2.2 Mathematical Model

2.2.1 Dynamical Equations

The mathematical model of an isotropic shallow flexible spherical
shell in orbit was developed in references 11, 18-19]. The main
assumption is that the shell's elastic displacements were
principally in the transverse direction (parallel to the symmetry
axis) and were small as compared with the other characteristic
dimensions of the shell. The assumption of shallowness further
insures that the ratio of the displacement of the shell's apex point
above its base plane (H) is small as compared with the radius in the
base plane, E, (Figure 1).

3



Orbit

Figure 1. Orbiting Shallow Spherical Shell System
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The resulting linearized equations of motion for the rigid
rotational and generic elastic modes were developed as:

,0+4U34+(I-U3)i=CzlJz we

(0) 6 (n). / (0) 2
e-31 2 G-(2/Jy )I ii Cn='Cy/Jy ac (1)

n-1

ci(i3c+2l /i)-I M tE/ iw (I - 1, 2,p . 6)

where

S- W 0 t , -j = qi(t)/I (i - 1, 2, ... 6)

The derivative in Equation (1) is with respect to r.

41, *, 8 yaw, roll and pitch angles, respectively, between
the undeformed axes of the shallow spherical shell
and the axes of the orbiting local vertical/local.
horizontal system

qi(t) modal amplitude of the ith generic mode

WC orbital angular rate, constant for assumed
circular orbit

I. characteristic length (the base radius)

Mi the ith modal mass

(0O) (0) (0)(0 (0 ) principal moments of inertia of the undeformed

shell

Cx, Cy, Cz the components of external torques

Xc coordinate of differential area on the surface
above the base plane

(0)- (0) (0) (0)- (0) (0)0) (0 (0)* l, U~2, U3 (jzO. OJy /j"Ox (jxO)jzO))/jy

W0•O)-j•O))/J0) , respectively

Ii (~i) dv

'Ox transverse component of the ith modal shape
function

wn natural frequency of nth mode

5



2n wn/wc

The frequencies, w, of the spherical shell are evaluated us ng the
following identities, as presented by Johnson and Reissner. 21]

2 D ) 0 4 J + (2)Wpj= -h-p--V•i• .Pj+•()

where

D - Eh 3 /12(1-D 2 ), ending stiffness factor

W2 - E/pR2

v = Poisson's ratio

p - density of shell material

E - modulus of elasticity

h = wall thickness of the shell

L - the base radius of the shell

R -radius of curvature of the shell

The ipj are calculated from

i Jn(In, +L IP(..j.) 1-v - 1 for p-O,I (3)
2 J-+I v1pj) + I- LpjU

For the sample calculations in this paper, we will consider only
such values of ppj Q - 1, 2, 3) for the cases where p - 0, 1.

The mode shapes of the transverse vibrations of a shallow spherical
shell with a completely free edge are given by:C21, 22]

(n Ap -- r,, CpjeP+Jp(upj,&)+Dpj(Upj,&)l Cos p(0+0O) (4)

where p the number of nodal diameters (meridians)

J the number of nodal circles

For the following proposal numerical values considered: H - im; t -
lOOm- h - 0.01m; v - 1/3; R - 5000m; p - 31.8309 kg/m 3 ; E - 0.840466
x 10• Newton/m 2 ; the frequencies and the shape function coefficients
are shown in Table 1. (Cpj - 0; p 0 0, 1; j - 1, 2, 3)

6



TABLE 1. FREQUENCIES AND COEFFICIENTS OF
SHAPE FUNCTION

wn
n(p,j) p j u 2  (rad./a) Apj Dpj

Pi

1 0 1 9.076 1.02778 2.1979 -0.8381xiO-l
2 0 2 38.507 1.02946 3.1389 0.3119xi0"2

3 0 3 87.82 1.03692 3.8468 -0.12787xi0" 3

4 1 1 20.52 1.02163 3.8359 -0.1901x10 1

5 1 2 59.86 1.03198 4.9627 O.7015x10" 3

6 1 3 119.00 1.04459 5.8752 -0.2845xi0"

7



2.2.2 Point Actuator Model

The point actuators are modelled as follows. Let the ith actuator
be located at (ixi, lyi, Lzz) and the force component of the ith
actuator be (fx, gui, fZ)Ifii- The torques provided by the a actud
ators are as follows:

0x 4i1. illj xi
C= zIy0 ZzI o x y I fil (5)

'z I tyj t1x 0 )(fzi

The corresponding generic force in the nth mode,

En = Yn)(fil/M) 6(x'xi, Y-Yj, z'zi)dm (6)
i

For the shallow spherical shell It is assumed that the major elastic
displacement occurs in a direction normal to the base (y, z)

plane, i.e., *(n)= *n)(.•, B)i. The control forces provided by the
a actuators are

a a
f =X•fi • (fxi ^i + fy i + fzi ^)IfiI (7)

i i

Substituting (7) into Equation (6), we have

a n
En x (n t, Bi)fxil fil (8)

2.2.3 Point Sensors and the Observational Model

In order to describe the geometric relationship between the orienta-
tion and reference systems, it is necessary to define the following
coordinate reference systems:

[Ij, it ýi, El Earth Inertial coordinate system, its center is the
center of Earth, 1i axis points to the spring equinox.

{o 0 , So, ýo, 0} Orbital reference system, its center is the mass
center of the undeformed shell, the 10 is along the outward local
vertical from the center of the Earth.

li, SP t, O0 The body reference system of the undeformed shell,
i.e., the principal axes system of the undeformed shell.

The relationships between the coordinate reference systems are as
follows:



(03) - Aoi(wp+f., to 0).~) (9)

where ip is the argument of perigee, fe is the true anomaly angle, L
is the orbital inclination, and 0 is the right ascension of the
ascending node line.

- Abo(*, eG - ) (10)

where

cos*cose sinOcos*+cossinesin.* sin$sin*O-os3sinecos*

Abo 31-sn#cose cosýcos,-sinOsinesin* Cos3Wn*+31n~sinecO3*

sine -cosesin* cosecosveo/

It is assumed that two earth horizon sensors are used for measuring
the angle, .e2, between the axis S and to, and the angle, ee3. be-

tween the axis ý and io. The observational geometrical relation-
ships are as follows:

cOSee2 - to - - siln Cose (11)

cOSee3 - 1 to - sine (12)

It is assumed that two sun sensors are used for measuring the angle,
8 s2, between the axis and the direction vector of the sun, it and
the angle, 933 , between the axis I and t The observational geo-
metrical relationships are as follows:

cOsG5 2  30= oI - s3n~cos3(to.3)+(Cos3cos3-s3insinesin*)(So-S)

+(coss3in*,3sins3inosinecos*)(ýo-A) (13)

cosG5 3 - .S - sine(t 0o.)-cosesin*(jo-S)+cosecos•(•o.S) (14)

It is assumed that Y displacement sensors are used to measure the
shell's transverse displacement parallel to the x axis, i.e.,

gi " Ctu(&i, 8i; t) i

Cf 4 )(& , B )qj(t) (15)

f(t, Si) Ej(t) (i - 1, 2, ... , v)

9



where

U(&i,.Bi;t) displacement vector of the shell at (&i, 01)

Cf coefficient relating the displacement to the output volt-
age_

the base radius of the shell

The linearized version of Equations 11-14 and Equation 15 are
combined into the observation equation for the shell system as
follows:

Y - Hx (16)

where

cosee2
cosee3 F

cosG5 2' (T0*9)y cO3Os2-(rco'S)Y . coses 3 -(%o.S)
91
g2

gY

0 0 1

(ko' -C? (. 00

-(004) 0 (. 3 (T) (63

(Ox (EI,81),Ox (E 1, 1) .... tx (ý1.81) 0 (4Y)x9

(1) (2) (6)
(*x (E2,82)#x (C2.82) ....- x (C2,82)0 x3 Cft ...

(1) (2) (6)( *x ( Ey .0 y ) Ox ( y .6' ) .... Oix ( CY9 , y 1 x

2.2.4 The State Equations of the Shallow Spherical Shell System

Considering Equations 5 and 8, Equation '1 can be written in the
state vector form:

x- Ax + Bu (17)

10



where -.

X a ( 0. , e clo. 2. £3... £6, *9 *9 5s ;19 ;2e ;' 6)T
u- (Iffa f~ * I f)T

A (.0 1) B 0D a

al1 d12

;22 d 2 1  d 3 4 d 3 5 d 3 6
i" .D .d53.

• d63

The state Equation (17) can be discretized as follows

x(k+l) - *(AT)x(k)+.(AT)u(k) (18)

where

AAT
C(AT) e ; AT sampling time

AT
r(AT) 0 *(AT-t) B dt

The discretized observation equation is as follows

Y(k) - Hx(k) (19)

2.3. The Placement of Actuators

The concept of the degree of controllability has been used for deter-
mining the placement of actuators on the shell. The detailed re-
sults of this study are described in reference [20]. In this paper
we only list part of the main results In Table 2.

The degree of controllability is the scalar measure of system
controllability and its reciprocal Indicates the control effort of
the system. The degree of controllability, ul, in Table 2, is
defined as follows:

A min(wc) (20)

where

we a PcPCT

Pc - (r or #2r ... on 1 )

11



TABLE 2. THE DEGREE OF CONTROLLABILITY FOR DIFFERENT LOCATIONS OF
ACTUATORS ON THE SHALLOW SPHERICAL SHELL

Case No. Actuators Locations of Actuators Degree of Controllability, ul

1 6 0.0

2 6 -0.13875x1O012

3 6 0.14332xlO0"0

6 0.14332xiO010

5 12 0.28673x1O- 10

6 12 0.85391x10" 12

7 12 -0.45342x1O"10

8 12 o0.45349x1O- 10

12



The values of the degree of controllability for each case are listed
in Table 2. The reason why the degree of controllability for Case 1
is zero is that all the actuators are located along the meridional
nodal line of one of the fundamental shell vibrational modes. The
reason why the degree of controllability for Case 6 is so low is
that the actuators are all located on the same nodal circle (C =
const.).

It is assumed that the thrusters which are located at the shell's
edge have two jet directions: (I) tangent to the shell's edge and
(ii) normal to the shell surface. Each of the other thrusters has
only one jet direction - normal to the shell's surface.

If the number of actuators is limited to 12, the arrangement of actu-
ators as in Case 7 or Case 8 is suggested.

2.4 Analysis and Design of the LQG Optimal Regulators and Ob-
servers for the Shallow Spherical Shell System

The dynamic equations and observational equations of the shallow
spherical shell system, as a deterministic model, have been de-
veloped in the previous section. They are Equations 18 and 19. In
fact, dynamic systems are driven not only by our own control input,
but also by disturbances which we can neither control nor model
deterministically. Sensors generally do not provide exact readings
of desired quantities, but introduce their own system dynamics and
distortions as well. Furthermore, these devices are also always
noise corrupted. In order to solve these difficulties, the theory
and method of the LQG problem (design of the optimal stochastic con-
troller for a problem described in terms of linear system models,
quadratic cost criteria, and Gaussian noise models) are effective.
In this section the LQG theory is applied to the design of sub-
optimal regulators and estimators for the shallow spherical shell
system.

2.4.1 Model, Problem and Solution[12J

Let a system be adequately described by the n-dimensional state
difference equations:

x(k+1) - Ox(k) + r(k) + w(k) (21)

where the p-dimensional u(k) is the control input to be applied and
w(k) is the n-dimensional zero-mean white Gaussian discrete-time
noise with

Efw(i) wT(j)l - Q 6 ij (22)

and assumed to be independent of the initial state condition. The

initial x(O) is modeled as a Gaussian random vector with mean ;(0),

13



and covariance, P0 . Available from the system are m-dimensional

sampled-data measurements of the form

Y(k) - Hx(k) + v(k) (23)

where v(k) is the m-dimensional zero-mean white Gaussian discrete-
time noise with

E{v(i)vT(j)} - R6ij (24)

and assumed independent of both x(O) and w(.).

The system of Equations 21-24 describes a time-invariant system
with stationary noise. If the system model is stabilizable and
detectable, there will be constant gain for both the controller and
observer dynamics. The stochastic optimal control, u, will minimize
a quadratic cost function of the form:

U

J - E1/2 1 [xT(i)tx(i) + uT(i)gu(i)J] (25)
i=I

The LQG solution for the time-invariant system with the station-
ary random noise model is111, 12)

u(k) - -G G(k) (26)

G* - (A+rTFr)IrTý4 (27)

where the P satisfies the algebraic Ricatti equation

= (t-rG*) T(t-rG*) + G* TR G* + (28)

A
The state estimate, x(k), is given by

A A
x(k) - x(k/k'1) + K(Y(k) - H2(k/k-1)) (29)

where

Ax(k/k-1) - *A(k-1) + ru(k-1) (30)

and

i - PeHT(HPeHT + R)- 1  (31)

The covariance of the state estimate, Pe, satisfies the algebraic
Riccati equation

-e - (,K* H)Pe(O-VH)T + ,KRKTOT + Q (32)

14



where

K- *K (33)

2.4.2 The Separation Property and Suboptimal Design

It is wise to seek the possibility of a separate determination of
the optimal state estimate and the optimal controller. Due to com-
putional delay, what is often considered for implementation is not
the control law given by Equation 26, but a suboptimal control

u(k) - -G*' (k/k-'1) (34)

wt~ere

x(k+l/k) - *•(k/k-1)+ru(k) + OK(Y(k)-H^(k/k-1))

Define the error of the predicted estimate of the state as,

4x(k/k-1) - x(k)-^(k/k-1) (35)

the x(k+l) and Ax(k+l/k) may be combined into a simple system de-
scribed by the state equations[23]

Xkl -G* rG)(x(k) 1 (k)

A(::I&l k) (:ri*H x(k/k1)) (1 42K)(:k)) (36)

where

The output equation of the complete system has the form

'x(k)
Y(k) - (H 0) ) + v(k) (37)

16x(k/k-1 )

From Equation 36, the LQG suboptimal control dynamics also consist
of two parts: the dynamics of the plant with a feedback controller
and the dynamics of the estimator feedback loop. The matrix describ-
ing the dynamics of the closed loop controller is

A * a o-rG* (38)

whereas the analogous matrix for the closed-loop estimator is

AA K*H (39)

where
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The eigenvalues of A* and A are independent of each other. In the
synthesis of the control loop it is, therefore, possible to arrange
the poles of the estimators and controllers separately. Therefore,
the eigenvalues of the closed-loop system simply consist of the regu-
lator poles and observer poles, i.e., the eigenvalues of A* and
respectively. It is .well known that, In the time-invariant system
case, if and only if tVe open-loop system model is both stabilizable
with respect to u(k) and detectable wi~n respect to

y(k), there do exist gains G* and K tnat can provide asymptotic
closed-loop stability. Furthermore, under the stronger assumptions
of complete controllability and complete observability, we can place
both the regulator and observer poles arbitrarily (within the re-
striction of the complex conjugate pairs).

It is assumed for system (21), (23) that the pair (0, r) is either
completely controllable or stabilizable by state feedback, and the
pair (0, H) is either completely observable or detectable, then the
gain matrix of the controller, G*, and the gain matrix of observer,

K , may be obtained from Equations ?7, 28 and 31, 2, 33, respective-
ly. They are functions of the weighting matrices I and the obser-
vational noise variance, R, and the system noise variance, Q, respec-
tively. Therefore, the eigenvalues of the closed-loop controller A*
will be changed by means of the changes of the weighting matrices,
Au
AR 6;and, similarily, the eigenvalues of the closed-loop observer

A are also changed with the variation of the matrices, R and Q.
Let

A A

HTH , R - ucIO

Q = -Q'0 , R = URIO

In order to find the appropriate arrangement of the controller and
observer poles, it is necessary to study the loci of the A* eigen-
values and the A eigenvalues with uC or PR, PQ. The loci of the
maximum and minimum moduli of the eigenvalues of A* for the systems
of Case 6 and Case 7 in Table 2 are listed in Table 3.

The maximum and minimum moduli of the eigenvalues for A vs. the
different parameters, PR and pQ, are listed in Table 4.

It is assumed that the covariances of the measurement noise and the
system (plant) noise are RS - 10ý610 and QS - I0ý10P respectively.
Based on this data and Tables 2-4, we can arrange the position of
the controller and observer poles. The procedures are as follows:

(1) Placement of actuators: Based on the calculation of the degree
of controllability for different arrangement of actuators, to deter-
mine the best placement of the actuators. As shown in Table 2, if
the number of actuators is 12, the better placements are indicated
in Cases 7 and 8. Case 7 is proposed to be simulated for the design
of the controller and observer.
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TABLE 3. THE RELATIONSIIIP BETWEEN THE POSITION OF THE REGULATOR
POLES AND WEIGHTING MATRIX

A Case 6 Case 7
R - PCIO Moduli of A* Elgenvalues Moduli of A* Elgenvalues

PC Min. Max. Min. Max.

10-16 0.30717x10" 7  0.99997 0.30334x10"7 0.99998
1O-14 0.42290xlo" 7  0.99969 0.33982x10- 7  0.99982
10-12 0.11522x10- 5  0.99696 0.39831x10- 6  0.99826
10-10 0.11217x10" 3  0.97817 0.36832x10-4 0.98271
108 0.11718x10"1  0.97818 0.37316x10- 2  0.83858
10-6 0.48849 0.97865 0.35403 0.93776
10-4 0.90319 0.98828 0.86382 0.98745
10-2 0.96867 0.99848 0.96763 0.99806
1 0.98768 0.99984 0.98809 0.99981
102 0.99037 0.99998 0.99038 0.99997
104 0.99042 0.99999 0.99042 0.99999
106 0.99042 0.99999 0.99042 0.99999
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(2) Placement of observer poles: Based on the values of the
measurement noise and plant noise covariances, i.e., RS - 10"610, QS
= tO1 0 1IO, the minimum and maximum moduli of the A eigenvalues may
be determined preliminarily from Table 4. In general, as for the
design of the Kalman filter, the R and Q should satisfy the
conditions: R > RS, Q > QS. After these conditions have been
satisfied, the location of the observer poles may be changed by
means of the variation of parameters PR and pQ in Table 4. When R =

RS, Q = QS, the minimum and maximum moduli of the eigenvalues of A*
(observer) are 0.74399 and 0.99450, respectively.

(3) Placement of controller poles: As we know[23] the minimum
modulus of the observer closed-loop eigenvalues should be less than
that of controller closed-loop eigenvalues, so that the estimator
can provide accurate timely state information for the controller.
Based on this principle, the possible appropriate modulus of the
minimum controller eigenvalues for Case 7 (Table 3) is 0.86382,
i.e. R - 10-410, the minimum and maximum modulus of the eigenvalues
of A (controller) are 0.86382 and 0.98745 (Table 3).

(4) Certifying by simulation: In order to certify the preliminary
design of the controller and observer, in adition to showing the LQG
designed controlled response for this system, we also need to
propose another kind of controller and observer placement for
comparing with the above preliminary design.

2.5. Digital Simulation

The simulation of the LQG digital control of the orbiting shallow
spherical shell system is considered here including some controllers
and observers. The software package, ORACLS,[ 2 4 ] has been used for
implementation.

It is assumed that the measurement accuracy of the displacement
sensors is about the order of 1 centimeter for the shell deflection,
and the modelling error for the dynamical system is less than the
error of the measurement sensors. The covariance matrices used for
the simulation of both the sensor measurement and system (plant)
noise are determined as follows:

RS = 10-610 is the covariance of the measurement noise used in the
simulation and QS = 10"1010 is the covariance of the system (plant)
noise used.

Now let w(i) be the system noise used in the Kalman filter model,
then

Ejw(1)} = 0 and E{v(i)v T (j)} = Q6iJ

Define v(i) as the observational noise used in the Kalman filter
model. Similarly,

Ejv(i)j - 0 and E{v(i)v T (j)l = R6iJ
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Initial state simulation is then

x(o) - ÷(0) wo (0) E{x(o)}

Po - EfwowoT}

The initial conditions are assumed as

; 1 (0) - ,(0) - 0.0 , -x2 (0) - 0(0) = 0.1 , x 3 (0) - 0(0) 0- 1

W(0) - cI(0) = 0.01 , x 5 (0) - x6(0) - ... ; X1 8(0) - 0.0

and the initial values of the estimated state are assumed to be
zero, i.e.,

x 1 (0/-1) - 0.0 , x 2 (0/-1) = 0.0

x 3 (0/-1) - ... x x 1 8(0/-1) = 0.0.

In order to study the influence of different numbers of actuators on
the LQG control process and the influence of different locations for
a given number of actuators on the LQG control process, Cases 2, 4,
6, 7 (Table 2) are selected for simulation. The minimum modulus of
the eigenvalues of A* for the four cases are 0.91717, 0.86701,
0.90319, 0.86383, respectively, but the minimum modulus of the eigen-
values of A* are the same, i.e., 0.74399. The transient response
under the LQG optimal digital control for Cases 2, 4, 6, 7 are shown
in Figures 2-5. It is evident that the transient response of Case 7
is the best among Cases 2, 4, 6, 7, because there are more actuators
for Case 7 and the degree of controllability for Case 7 is also the
highest among the four cases. It is valuable to point out the fact
that the transient response of Case 6 is worse than that of Case 4
even though the number of actuators in Case 6 is greater than those
in Case 4. The reason is that eight actuators for Case 6 are all
located on the same nodal circle (ý - const.) and the influence of
the control forces along the same nodal circle on the displacement
at the other nodal circles are very weak. In view of the degree of
controllability, it is also easily understandable. The degree of
controllability of Case 6 is less than that of Case 4.

In summary, the locations of the actuators should be as far as possi-
ble from the nodal meridians, and also should be arranged so that as
few actuators as possible will be located on the same nodal circle.

As we pointed out in Ref. [23], an appropriate design of LQG optimal
control systems should require that the minimum modulus of the eigen-
value of the LQG closed-loop observer should be less than the mini-
mum modulus of the eigenvalue of the LQG closed-loop controller, so
that the estimator can provide accurate timely state information for
the controller. In order to certify again this fact, four combina-
tions of observer/controller pole locations (EC-1, EC-2, EC-3, EC-4)
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described in Table 5 are proposed for simulation based on Case 7 (12
actuators, see Table 2).

The transient responses of the LQG optimal digital control of the
shallow spherical shell for EC41 to EC'4 are shown in Figures 6'10.
It is evident that the transient response of attitude and modal
amplitude for EC-1 are the worst (Figures 6 and 7). These transient
responses do not converge, because the minimum modulus of the
observer eigenvalues is greater than the minimum modulus of the
controller elgenvalue; thus the estimator cannot provide the timely
accurate estimate of the state. The transient response of EC-2 is
better, because the minimum modulus of the observer eige.,values Is
less than that of the controller, so the observer can provide the
accurate timely state estimate (Figure 8). It Is expected that EC-3
and EC44 both can provide appropriate timely state estimates for the
controller, (Figures 9, 10) but the terminal part of the transient
response of the estimate and control for EC-r is degraded (note the
lack of smoothness in Figure 10). The appearance of this phenomenon
is due to the small ratio, UR/hQ, so that Kalman filter becomes too
sensitive to the new observational data with the actual measurement
noise. Therefore, the relationship between the locations of the
controller and observer poles for EC-2 and EC-3 are better.

2.6. Conclusions

The analysis and design of the optimal LQG digital shape and orienta-
tion control for an orbiting shallow spherical shell system are pre-
sented. The emphasis in this paper is placed on the analysis and
design of LQG optimal digital controllers and observers for the
orbiting flexible shallow spherical shell system. As for the place-
ment of the controller and observer poles the minimum modulus of the
eigenvalue of the closed-loop observer must be less than the minimum
modulus of the eigenvalues of the closed-loop controller, so that
the observer can provide the accurate estimate of the state
variables for the controller. When placing the positions of the
controller and observer poles to meet the above requirement, we
should also pay attention that the ratio PR/PQ cannot be too small;
otherwise the Kalman filter becomes too sensitive to the new
observational data so that state estimate will not be so smooth.

The problems of determining the number and location of the actuators
are also studied by means of the concept of the degree of controlla-
bility together with transient response simulations. For the model
of the orbiting shell treated here 12 actuators properly placed can
provide both shape and orientation control. Actuators placed along
the edge of the shell should be capable of providing thrust both
tangentially and normal to the base of the shell.

25



TABLE 5. THE PARAMETERS OF THE SYSTEM EC1 - EC4

Combination of . Min. Modulus Min. Modulus
Obser./Contr. R - PCIO R - PRIO Q - vQ10 of Eigenvalues of Eigenvalues

Poles PC UR UQ of A* of p

EC-I 10-4 10-6 10-16 0.86383 0.99402
EC-2 10-4 10-6 10-10 0.86383 O.T4399
EC-3 10-4 10-6 10-6 0.86383 0.32581
EC-4 10-4 10-6 10-4 0.86383 0.1484Txlo"2
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3. SOME DEFINITIONS OF DEGREE OF CONTROLLABILITY (OBSERVABILITY)

FOR DISCRETE4TIME SYSTEMS AND THEIR APPLICATIONS

3.1. Introduction

The concept of controllability is one of the cornerstones of modern
control theory. Yet despite its fundamental importance from a theo-
retical point of view, its practical utility for control system
either controllable or it is uncontrollable. There is no provision
for consideration of the more subtle question: how controllable is
the system?

The desirability of a degree of controllability (earlier it was
called the controllability index) concept has been recognized in the
literature since 1961 when Kalman, Ho and Narendra[25] discussed it.
Early papers in the area[2 6 "2 8 ] concentrated on particular proper-
ties of either the controllability Grammian matrix or the controlla-
bility matrix itself in developing definitions of the degree of
controllability. It is natural to try to connect the degree of con-
trollability to properties of the standard controllability matrix
Pc = (B:AB: ... AnýlB), and define the degree of controllability as
the square root of the minimum eigenvalue of P.PeT. In 1979 Viswana-
than, Lon man and Likins considered the "shortcomings" ot _,is defi-
nition [291. Four apparent difficulties with this definition must
somehow be handled before the definition becomes "viable"; there-
fore, they presented a new definition of the degree of controlla-
bility of a control system by means of a scalar measure based on the
concept of the "recovery region."

In this paper three candidate definitions of degree of controlla-
bility, which were presented first by Muller and Weber[2 8) for
linear continuous systems, are presented for linear discrete-time
systems based on the scalar measure of the Grammian matrix. The
three candidates for the degree of observability of linear discrete-
time systems are also presented. Because some difficulties with
this definition (as pointed out by Viswanathan[2 9] have been handled
here, and the degree of controllability (observability) based on a
scalar measure of the Grammian matrix can be readily calculated, the
three candidates for the degree of controllability (observability)
are viable for practical engineering design.

The emphasis of this paper is in showing the physical and geometri-
cal meanings and the general properties of the three candidate defi-
nitions of degree of controllability (observability) as physically
meaningful measures. The concepts of degree of controllability are
applied to the actuator placement problem for the orbiting shallow
spherical shell control system. The degree of controllability for
seven cases in which the placement of actuators are all different
are compared. The LQG transient responses for several typical
systems with different degrees of controllability are also shown.

3.2. Concept and Physical Meaning of Controllability

In order to show the physical meaning of the degree of controlla4
bility, first of all, we consider the fuel optimal problem for the
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linear disCrete-time system. The state equations are as follows:

x(ki) - t(ki,ki.1)x(ki.l) + r(ki. 1 )u(kt. 1 ) (40)

(i - 1, 2, ... N)

The fuel optimal control problem can be stated as follows: To find

the system control u(ki.1) (i - 1, 2, ... N) which can transfer from

the initial state x(kO) to the final state of the system x(kN) - 0
during the time interval [ko,kN], and such that the performance
index,

N

JN " I- < u(ki-l) u(ki- ) > (41)

is minimized.

Equation (40) may be written

N
X(kN) - f(kN,kO)x(ko) + I *(kN,ki) r(ki.I) u(ki-i) (42)

i-I

or

x(kN) - 0(kNkO) x(kO) - TpU (43)

where

Tp - (r(kk-1): 0(kN, kN-1)r(kN-2): ... *(kN, ko)r(ko)) (44)

"u(kN-1
U(kN.2)

u - • (45)
u(k0)

Considering the requirement that X(kN)-O, Equation (43) may be

written:

-x(ko) - PcU (46)

where

Pc - 0(ko,kN) Tp (47)

and the fuel optimal problem becomes the following conditional extre-
mum problem

inf ll II 21 PCU( ) - -x(ko)} (48)

where 1".I represents the Euclidian norm. This problem can be
solved by using the Lagrange multiplier method. If X is the
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Lagrange multiplier, the problem stated in Equation 48 is equivalent

to the general problem of extremizing the following cost function

Jp < U, U > - XT(PcU +x(ko))

In order for Jp to be an extremum the following necessary conditions
must be satisfied:

•-• M 2U-Pc TX 03U (49)

a J- PcU+X(ko) -=
- 0

i.e.,

(PcPcT)X - -2x(kO)

(50)
2U = PcTx

If the system is controllable, then the inverse of the matrix,
(PoPcT), exists, and the optimal control, U, is

U* U -PcT(PcPcT) 1 Ix(ko) (51)

After substituting Equation 51 into the performance index, Equation
41, the minimum control energy is obtained as follows:

JN = < U*, U* > c < -PCT(PcPcT) 1 lx(ko) , -pcT(pcPcT)'lx(ko)

. < (PcPcT) 1lx(ko), x(kO) > (52)

J* = xT(kO)Wc- 1 (kN,kO)x(kO) (53)
N

where, Wc(kN,kO) = PcPcT

From intuitive considerations, the linear system "I" is more control-
lable than the linear system "2" if the energy, JN* required by

system "1" for transferring the initial state, x(k 0 ), to the final
state x(kV) - 0, is less than the energy required by the second
system, JN 2 ' for transfer between the same initial and final

states within the same time period, or stated mathematically,

xT(k 0 )W;l(kN,kO)x(ko)<xT(ko)W;l(kN,ko)x(kO) Vx(k 0 ) eRn (54)

Because W;l(kN,ko) and W;c(kN,kO) are two symmetrical positive
definite matrices, the relationship (54) should be satisfied for any
initial condition, x(ko)eRn; this implies that

Wc(kNko) < W(KNko)(55)
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or

Wc1(kN,kO) > Wc2(kN,kO) (56)

Considering the symmetry of the matrices, WcI and Wc2, the following
relationships should be satisfied:

" 'w; ) < A (w" ) (i - 1,, ... n) (57)

or
Xi(W el) AI(W o2) (I - 1, . .n) (58)

where Ai("cb, Aj(W"1), Ai(W"l), Xi(Wc2) are the Ith eigenvalues of

" .1 , .61
the matrices, WO ,c2 Wci and Wc2, respectively. It is evident
from Equation 53 that the loci of equicontrol *effo t (J* - con-
stant is a superellipsoid and its equation (J N 1ý in the principal
axis system is as follows:

X12 _ + ... + Xn2

1 1 1 (59)
Xt(We-t) A2(Wc-') An(We__)

Considering the relationship between Ai(Wc1) and Xi(Wc):

Xi(Wc" 1 ) 1 1 (60)

i.e.,

AI(Wc•I) < A2(Wc-I) < ... < An(Wc 1)

1 1

AI(Wc) - 1n(W c-) < A2(We) = 1n=1(Wc -)

... < An(We) = 1I(Wc-I)

Then Equation 59 can be written as follows:

X12 )+ X2W = 1 (61)

Therefore, from the geometrical viewpoint, it is clear from Equa-
tions 54 and 61 that if system "1" is more controllable than system
"2," each axis of the superellipsoid for system "1" is longer than
the corresponding axis for the system "2." The square root of each
of the eigenvalues of the matrix, We, is just the length of the
corresponding superellipsoid principal axis.

3.3 Three Candidates for the Definitions of Degree of Controlla 4

bility and Their General Properties

As we see in Equation 54, in terms of the matrices this comparison
of the costs of two systems leads to (56), i.e.,
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Wc1(kN,kO) > Wc2(kN,kO) (56)

which means that Wcl-W. 2 has to be a positive semidefinite matrix.
The matrix condition (56) is equivalent to "n" scalar conditions
and, therefore, a simple scalar quantity cannot be employed tO
describe the conditions (56). For engineering purposes it is desir-
able to replace the matrix measure by a scalar figure of merit [25].
There are three obvious candidates for such scalar measures:

the maximum eigenvalue of Wc (kN,kO), the trace of Wc (kN,kO), and
the determinant of Wc(kN,ko) [28]. The significance of these quanti-
ties is shown in the following section:

(1) The first candidate for the degree of controllability, VI_. As
shown in (54), we must consider the values of the control effort
xT(ko)W1' (kN,kO)x(ko) Vx(ko)cRn when comparing the control effort
of the two systems. It is natural to use the maximum control efA
fort,

Max xT(kO)Wc41(kN,kO)x(kO)

I I x(ko) I = 1 (62)

x(ko)ERn

as a scalar measure of the control effort. It is well known that
the scalar quantity defined in (62) is just the maximum eigenvalue,

Amax(Wc 1 ), of the matrix We , and the Xmax(WcI ) is just the recipro"
cal of the minimum eigenvalue of the matrix, Wc, i.e.,

Max xT(ko)W 1(kN,ko)x(ko) = Xmax(Wc ) = 1Xmin(Wc) (63)

II x(kO)j = 1

x(ko)cRn

where the Xmin(Wc) is the minimum eigenvalue of the matrix,
Wc(kN,ko). For the reasons given above, we may define the degree of
controllability, pl, as follows:

P1 - Amin(Wc(kN,ko)) = Omin 2 (Pc) (64)

This definition means that as pi increases, then the control effort
decreases. It is evident that the square root of the degree of con4
trollability defined by Equation (64) is just the minimum semiaxis
of the superellipsoid defined by Equation (61) (it can be called the
degree of controllability superellipsoid). If U, = 0, the system
will not be controllable.

(2) The second candidate for the degree of controllability, up.

Similar to (62), we can also use the average value of the control
effort, xT(ko)Wc'lx(ko), over the unit hypersphere Jx(k 0 ):11 x(ko)I
= 13

36



xT(ko)Wcelx(ko)dx(ko)
x(kn )I - 1I dx(ko)

I1 x(ko)lI - 1

as a scalar measure of the control effort. After integrating, it
can be obtained [28]

r xT(ko)Wc&lx(ko)dx(ko)
J1 I x(kO)ll 1 = At (65)

dx(k 0 ) n
Il x(kO)l = 1

where n is the order of the state. Therefore, we may define the
second candidate for the degree of controllability as follows:

n (66)
12 =trWc-I(kN,ko)

For practical applications it is desirable to maintain the average
cost Equation (65) as small as possible. Hence, the measure, U2,
has to be as large as possible. The definition (66) of a measure
instead of (65) is more convenient because uncontrollable systems
are characterized by a vanishing value of 02, which arises from a
limiting process.

(3) The third candidate of degree of controllability, up. The
third possible candidate for a scalar quantitative measure of con-
trollability is the determinant of Wc(kNjkO) because the volume of
controllability superellipsoid xT(kO)Wc (kN,kO)x(kO) - 1 is propor-
tional to the square root of the determinant of Wc(kN,ko):

Vol =x(kO)TWcA1x(kO) < 1 dx(kO)=Const. d-e-tWc (67)

Therefore, we may define the third candidate definition of degree of
controllability as follows:

P3 = (detWc(kN,kO))l/n (68)

From geometrical considerations, 2 n( P 3 )n/2 is just the volume of the
hyperrectangular parallepiped whose sides are the axes of the hyper-
ellipsoid. The larger, P3, the more controllable the system is; the
uncontrollable system is also characterized by U3 - 0.

(4) The general properties of the degree of controllability. In
the previous sections we gave the definitions of degree of controlla-
bility and their physical and geometry meaning. The degrees of con-
trollability, as a scalar measure, are invariant under an orthogonal
similarity transformation. The proof will be given in the Appendix
of this paper. In addition, they are scalar quantities defined over
the cone set, Wc*, of positive definite and semidefinite matrices.
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Their properties are as follows [28):

(a) ui(Wc) - 0 (i - 1, 2, 3) for WcCWc' with dot W a 0, i.e., the
system cannot be controllable;

(b) ii(Wc) > 0 (i - 1, 2, ... N) for WceWc* with det We > 0;

(c) ui(AWc) Aui(Wc) (i - 1, 2, 3) for A > 0, WccWc*;

(d) Pi(Wc) > ui(Wcl) + Pi(Wc2) (i - 1, 2, 3) for W0  - WCl + Wc2,
Wl,, Wc2CWc*.

The proof of the properties (a) - (d) will be given in the Appendix
of this paper.

The physical meaning of the properties (a) - (c) are evident. The
physical meaning of property (d) is that the degree of controlla-

bility for the system which contains two control elements is higher
than the sum of the degrees of controllability for the two systems
each of which contain only a single controller.

The u1, U2, 03 are three kinds of candidates for the degree of con-
trollability, the physical meanings of which are different. The
following relationship among u1, u2 and P3 can be stated [28):

Ul S U2 < 03 (69)

The sufficient and necessary condition for the equality to be true
is that all of the eigenvalues of Wc be equal.

3.4. The Definition of Degree of Observability and Its Physical
Meaning

Suppose the dynamical equations and observational equations are as
follows:

x(ki) - 0(ki,ki..1)x(ki. ) + r(ki.1)u(ki.1) (70)

y(ki.1) - H(ki.1)x(ki.1) + v(ki-1) (i - 1, 2, ... N) (71)

where v(ki.I) is observational white noise with statistical proper-
ties

Ev(ki. 1 ) - 0 Ejv(ki.1)vT(ki.1)} - Rt. 1  (1 - 1,2, ... N).

Equation (70) may be written in another form in terms of the initial
state as follows:

i

x(ki) - f(kiko)x(ko) + I t(kikj)r(kj.. )u(kj. j1 ) (72)

J-1

Y(ki.I) - H(ki. 1 )O(kij.,ko)x(ko)
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i.-1

+ H(k -.1 ) X *(ki.l.kj)r(kj-1)u(kj-l) + v(kj- 1 ) (73)

(I - 1,2, ... N)

When I assumes values from 1 through N, Equation (73) can be put in
a matrix form as follows:

Y = Pox(ko) + V (74)

where

y(k0 )
y(kl) - H(kl)r(kO)u(kO)

y :
N-iy(kN.I)-H(kN-1) I 0(kN-1,kj) r(kj-1)u(kj-I)

J-1
H(k 0 )

P (kl-)#(kl -,ko)P0  (kN1 )*(kN1 .k0)

v (k 0 )

V(kN-0J

RO

EIVI . o0 EVvTI 1. R

RN-1

We consider the weighted least square estimate problem, the perform-
ance index of the weighted least square estimate is

J - (Y'Pox(ko))TRl(Y-Pox(k 0 )) (75)

It is well known that the weighted least square estimate ^(kO) is

x(ko) - (PoTRlIP o )lIPoTR-1y (76)

The estimate error is
x(ko) - (k 0 ) = (PoTR-lPo)-lPoR-1 (Pox(ko)-Y)

a "(PoTR1IPo)-IPoTRlV

The covariance of the estimate error Is

Ej(x(ko) - A(ko))(x(ko)-^(kO))TI - (p 0TRlpo0 )_1 (77)

When R - I, the covariance of the least square estimate error is
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Ef(x(kO) - x(ko))(x(ko)-x(ko))T} . (poTpo)`1 . WO)I (78)

where

W0 = P o Tp 0  (79)

Similar to the degree of controllability, we call the W0 the degree-
of the observability matrix. The three kinds of definitions of
degree of observability are as follows:

PI(WO) - Xmin(WO) (80)

02(WO) - t- = n _(81)

P3(Wo) - (det WO)l/n (82)

Because the W0o
1 is the covariance matrix of the least square esti•

mate, then the trW 0 • 1 is the sum of the squares of the variances
associated with the least square error estimate, so the physical
meaning of P2(WO) is evident. 'IP(WO) is the maximum eigenvalue of
the covariance error matrix W 0

1 for the least square estimte.
U3(Wo) is the reciprocal of the geometrical average of the error
covariance matrix eigenvalues for the least square estimate.

In general, if the estimation accuracy of system "1" is higher than
that of system "2," it means

W01 1 _< W02." (83)

It implies

W01 > W0 2 , trW 0 1 4 1 < trW 0 2 41  (84)

and

Ai(w0O > Ai(W 0 2 ) (i = 1, 2, ... n) (85)

Therefore

P1I(W01) P1 (W02)

P2 2 (W0 > 2)

113(W01) 4 3(W02)

i.e., the degrees of observability defined by (80-82) for system "1"
are all higher than the corresponding degrees of observability for
system "2."

3.5. The Degree of Controllability (Observabillty) for Disoreteo
Time Invariant Systems

Let the dynamical system and observational system for the discrete
time-invariant system be described as follows:

x(ki) = ox(kij I) + ru(ki. 1 ) (86)
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.y(ki) - Hx(ki) + v(ki) (87)

The degree of controllability matrix Wc for the system (86), (87) is

We a PCPCT (88)

where

Pc  - (r:or: ... n r) (89)

The degree of observability matrix for system (86). (87) is

W0 P o Tp 0  (90)

where

H
P0  H

(91)

The three kinds of definitions of degree of controllability are as
follows:

ui(Wc) - Xmin(Wc) (92)

n (93)P2(c) - trWc- 'T3

u3(Wc) - (det Wc)l/n (94)

Similarly, the three kinds of degree of observability are as
follows:

'1(Wo) - Amin(WO) (95)

u2(Wo) trW (96)

U3 (Wo) - (det Wo)1/n (97)

3.6. Application

We would like to use the concepts of the degree of controllability
for the actuator placement problem of the shallow spherical shell.
The motion equations for a shallow spherical shell in orbit subject
to external forces and torques are as follows [19):

X - AX + Bu (98)

where

A 0 1) B B

X - (y, *, 0, C1, c2 ... P 6, Y, + , i , 6 l, i2 . , 6)
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u = (Ifl 1 1 If2 1 , I . , I )T

i = qi(t)/t (I = 1, 2, ... , 6)

"gzlfl+v fzi "z2fv2v•2fz2 £f+ fSZ1 f +91. f I .t Iy za f ya +. ya f za

a~l X1 kL~i jz k 9. i .t i

JJxu)tUe2. ' • J(x U) o

"I ylf x1 + 1.xlf l Y 1y2 fx2+ x2 f 2 1ya f .L x a fy a
Jz( )c J z(U)• , • • ,j U)c

it Z1 f i 1 £xf Z1 zz2 fx24 ix2 fz2 tza fxa -1xa fza
B iy (O) c• 2 j y(O)Wc2 'Y W 2• y()c

_______(1)___ (E2P 82) x )M a 8 )

____ _1_ x (6 (E2'82) p (6)(E a aa

M6 cM.wc. M61wcx M6 twx'

T, 0, 0 yaw, roll and pitch angles, respectively, of the
undeformed axis of the shallow spherical shell.

qi(t) modal amplitude of the ith generic mode whose shape
function is Ox(l)

Wc orbital angular rate, constant for assumed circular
orbit

i characteristic length (the base radius)

Mi ith modal mass

Ox(i) the x-axis component of the ith modal shape function

1xi, tyi, tzi the components of the moment arm for the ith actuator

Equation 98 is nondimensionalized according to

T = wet, Li - qi(t)/1 (i = 1, 2, ... , 6)

The derivative in Equation 98 is with respect to T.

If we use six actuators to cont-'l the orientation and shape of the
shallow spherical shell, the arrangement of the six actuators may be
assumed for the following seven cases (Table 6):
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TABLE 6. THE ACTUATOR LOCATIONS (C, B) AND FORCE DIRECTIONS
(fx, ry, fz)

CASE I
Actuator No. C fx fy fz Location of Actuator

1 0.28 00 1 0 0
2 0.57 00 1 1 0
3 0.84 00 1 1 1
4 0.28 1800 1 0 0
5 0.57 1800 1 1 0
6 0.84 1800 1 1 1

CASE 2
Actuator No. f B f y fz Location of Actuator

1 0.28 50 1 0 0
2 0.57 50 1 1 0
3 0.84 50 1 1 1
4 0.28 1850 1 0 0
5 0.57 1850 1 1 0
6 0.84 1850 1 1 1

CASE 3
Actuator No. C 0 fx fy fz Location of Actuator

1 0.28 450 1 0 0
2 0.57 450 1 1 0
3 0.84 450 1 1 1
4 0.28 2250 1 0 0
5 0.57 2250 1 1 0
6 0.84 2250 1 1 1

CASE 4
Actuator No. fx fy fz Location of Actuator

1 0.28 900 1 0 0
2 0.57 900 1 1 0
3 0.84 900 1 1 1
4 0.28 2700 1 0 0
5 0.57 2700 1 1 0
6 0.84 2700 1 1 1

CASE 5
Actuator No. a B fx fy fz Location of Actuator

1 0.28 450 1 0 0
2 0.57 450 1 0 0
3 1.00 450 1 -sin450 cos45 0

14 0.28 2250 1 0 0
5 0.57 2250 1 0 0
6 1.00 2250 1 sin45 0 -cos450
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Table 6 (continued)

CASE 6
Actuator No. x fy fz Location of Actuator

1 0.57 00 1 0 0
2 0.57 900 1 0 0
3 0.57 1800 1 0 0
4 0.57 2700 1 0 0
5 1.00 450 1 -sin450 cos450
6 1.00 2250 1 sinhI5o -cos450

CASE 7
Actuator No. 8 fx fy fz Location of Actuator

1 0.28 900 1 0 0
2 0.57 900 1 0 0
3 1 .00 900 1 -1 0

S0.28 2700 1 0 0
5 0.57 2700 1 0 0
6 1 .00 2700 1 1 0
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The seven cases may be divided into two groups. The first group
includes case 1 through case 4. The second group includes case 5
through case 7. In the first group there are six jets (actuators)
for each case. In the second group there are six jets for each
case, but two of the jets for the second group are located at the
edge of the shell with their thrust direction tangent to the shell's
(circular) edge. In order to reduce the possibility that the jets
used primarily for shape control would also disturb the orientation
of the shell, the placement of these jets are arranged symmetrically
with respect to the shell's undeformed principal axes.

The values of the degree of controllability for each case are listed
in Table 7. The reason why the degree of controllability for case 1
is zero is that all the actuators are located along the meridional
nodal line of one of the fundamental shell vibrational modes.

In the first group of actuators, the best placement of actuators for
which the degree of controllabililty is highest is case 4. In the
second group, the best placement of actuators is case 7, and the
degree of controllability for case 7 is also higher than that for
case 4. The reason why the degree of controllability for case 6 is
so low is that four actuators are all located on the same nodal
circle (& = constant).

In summary, the locations of the actuators should be as far as possi-
ble from the nodal lines, and also should be arranged so that as few
actuators as possible will be located on the same nodal circle.

In order to control the orientation of the shell effectively, a com-
bination of tangential jets along the edge of the shell together
with selected jets normal to the. shell's major surface is recom-
mended.

If the number of actuators is limited to six, the arrangement of
actuators as in case 7 is suggested.

The transient responses with the LQG control for case 2 and case 7
are selected to show the differences in the attitude and the first
three modal amplitude responses.

The initial conditions are the same for the two cases, i.e., roll
C(0) = 0.1 rad., yaw T(0) - 0.0, pitch 0(0) = 0.1 rad., the initial
conditions for the first six modal amplitudes are q 1 (0) = 1 meter,
q 2 (t) - q 3 (O) ... - q6(0) = 0.0, respectively.

The transient response of the attitude motion for case 2 is shown in
Figure 11, the transient responses of t'!e 1st - 3rd modal amplitudes
for case 2 are shown in Figure 12. The transient responses for the
attitude motion and the modal amplitudes for case 7 are shcwn in
Figure 13 and Figure 14, respectively. The comparison of the first
modal amplitude responses for case 2 and case 7 is shown in Figure
15.
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TABLE T. THE DEGREE OF CONTROLLABILITY FOR THE DIFFERENT CASES

Case Location of' Actuator U! W2 M3

1 0.0 0.0 0.0

2 0.13875xl10'12  O.176J46xl1011  O.67227xl107

3 0.17673x10-11  0.23696x10-10  O.25O45xlO-6

14 0.179714xl1011  0.264I34x10-1O 0.31558x10-6

5 0.1~4332x10-10  0.121421xl10 9  0.70~448x10-6

6 O.48360xl10 12  0.146915x10-11  0.613814x10-6

7 L) 0.114332x10-10  0. 1 4788x 0-9  0.100814x10-5
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It is shown in Figures 11-15 that the roll is coupled strongly with
yaw, but the coupling of roll, yaw with pitch is very weak. The
quality of the transient responses of case 2 is much worse than that
of case 7. This is a result of the differences in the degree of
controllability for case 2 and case 7.

3.7. Conclusions

Three candidate definitions of the degree of controllability and
observability are presented for linear discrete-time systems based
on the scalar measure of the Grammian matrix. Their general
properties, together with the physical and geometrical
interpretations for the fuel optimal control problem are shown in
detail. The advantages of these kinds of definitions for the degree
of controllability (observability) are the clarity of the physical
and geometrical interpretations and the simplicity of the resulting
calculation. Thus, they are very useful for practical engineering
design.

The transient responses for several typical systems with
different degrees of controllability show that the quality of the
system transient response depends on its degree of controllablility:
transient responses of the system with a higher degree of

controllability are better than those of the system with a lower
degree of controllability. The applications of the concept of the
degree of controllability for actuator placement of the orbiting
shallow spherical shell system are successfully implemented in this
paper.
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4. OPTIMAL DIGITAL CONTROL FOR FREE4FREE ORBITING PLATFORMS

4.1. Specific Aims

To develop practical design methods using LQR digital controllers
and estimators for a third flexible orbiting plate, focusing on the
analysis of the closed loop dynamics of the platform subject to dis4
crete time input data.

4.2. Justification

Large flexible spacecraft systems have been proposed for future
applications in widespread communication, electronic orbital based
mail systems, and as collector of solar energy for transmittal to
Earth-based receiving stations. For such missions, with the inher-
ent size and necessary low weight to area ratio, the flexible parts
of such systems must be treated as nonrigid. To satisfy the
requirements of these proposed missions, both orientation and shape
of the orbiting system should be controllable.

Often the optimal control laws for this system are developed under
the assumption that the state vector is observed directly or the
state information can be stimated on a continuous basis. However,
for future applications the observational data will often be col-
lected on a sampled basis, creating a discrete-time data system.
Then the amount of information collected may be reduced and the
format of data input may be acquired more conveniently. For the
case to be treated here only a deterministic system will be ad-
dressed, i.e., no random noise will be considered.

Therefore, it appears useful and timely to study the control problem
of large orbiting space structural systems with discrete-time obser-
vational data. It is well known that the development of modern
control theory and technology provides a strong tool for solving
this kind of engineering problem. [30, 31] The LQR regulator tech-
nique[3 0 , 31) is that strong tool for synthesizing linear system
control laws. It can provide acceptable control performance once
the state and penalty matrices are properly selected. It does not
restrict the number of actuators to be equal to the number of
degrees of freedom in the system. Although, the LQR method has been
developed and widely applied, it is still not an easy task to apply
it to the engineering design for the control of large space structur-
al systems, especially for systems with sampled data input. There
are still many specific problems to be investigated. These are the
aims of this proposed research.

4.3 Methodology

By using a modified version of the general formulation of the
dynamics of a general flexible orbiting body formulated by
Santini, 1 32] the equations of motion for a free-free beam in orbit
were developed. In order to gain insight into the dynamics of such
a large flexible system, the equations of motion for a free-free
beam in orbit were studied.[1] The motion of the generic point in
the body was described as the combination of the rigid body motion
plus a superposition of the elastic modes.

53



Assuming the center of mass follows a circular orbit and the pitch
and the flexural deformations occur only within the orbital plane,
it is seen that the pitch motion does not influence the elastic
motion. Also, the pitch and the elastic modes are decoupled for
large values of the square of the ratio of the structural modal fre"
quency to the orbital angular rate. For small values of this ratio
the elastic motion is governed by Hill's 3-term equation which can
be approximated by a Mathieu equation. Using a Mathieu stability
chart, the resulting stability was considered. For small amplitude
flexural motion, the rigid body and elastic modes are modelled to
the first order, thus linearizing the equations of motion.
Subsequently, an extension was made to the forementioned formulation
and was applied to a thin, flexible orbiting plate.[33]

The ability to accurately determine the frequencies and mode shapes
is essential for the analysis and control of large orbiting
structures. For an aluminum square plate four different frequency
and mode shape approximation methods were analyzed:[2]

1) The approximate frequencies and mode shapes of a rectangular
plate were derived from a formulation by Warburton.[34, 35]

2) The analytical results for a square plate were calculated from a
method developed by Lemke.[3 6 ]

3) The frequencies and mode shapes were computed using a finite
element program, STRUDL, written at M.I.T.[37]

4) The frequencies and mode shapes were computed using GTdSTRUDL,
an updated version of STRUDL written at Georgia Tech.[ 3 8 ]

It was found that GT-STRUDL obtained better results than STRUDL and
produced accurate results for specific finite element input grid
point locations (node), whereas the Warburton and Lemke methods
could only afford approximate answers.

The attitude and shape control can now be achieved by placing point
thrust actuators perpendicular to the main surface and the edge of
the plate. The placement of the actuators on the main surface help
control the shape deformation and the torque about two axes. The
placement of the actuators along the edge of the plate help control
the torque about the third axis. Their effects on the rigid body
and elastic modes are modeled to the first order.[ 3 9) For this
investigation, it will be assumed that the sensors and actuators are
completely colocated with the actuators and that the system is
completely observable.

Now the control laws for this system may be applied to obtain the
optimal control feedback gains based on an application of the linear
regulator problem for a discretedtime data system.[ 3 0, 31] The
implementation of the LQR procedure will be accomplished by using
the ORACLS routines.[24]
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The theorem about choosing the length of the sampling period in
order to guarant e controllability will be applied to select the
sampling period.L23] When the controllability of the continuous
system is guaranteed, in order to maintain controllability for the
discretized system the eigenvalues of the system must satisfy
certain conditions. As for the signal reconstruction, the sampling
period, AT should be as small as possible, but if the sampling time
is too small, the computational requirements may exceed the computer
speed.

Under normal operation, the onboard computer estimation and control
must be finished processing all the input data during one sampling
period, AT, i.e., the prediction of the state variable which will be
used for the controller must be estimated in time before the be-
ginning of the next sampling sequence. Therefore, the sampling
period should be more than the minimum computational time required
by the onboard microcomputer for the simulation of each step in the
estimation and control process. The choice of sampling time is also
constrained by the performance of its transient response, i.e., overA
shoot characteristics, settling time, steady state RMS errors, etc.

4.4 Expected Results

A comparative parametric study will be performed for a different
sampling period, AT; the final determination of the sampling period
will depend on the compromise between several factors including the
controllability, restoration of the discrete4time input signal, the
limitation of hardware functions, and the quality of the transient
responses.

Software such as that currently available in the ORACLS LQR package
can be used to synthesize the control laws and simulate the trans-
lent responses and required control efforts.

4.5 Why

As we all know there have been several proposals for large space
structures, such as the Space Station, large antennas, solar panel
arrays, propulsion devices, etc. Often these modern spacecraft
systems can be modeled as a square or rectangular plate - the base

- with the attached appendages. The acquired knowledge from this
proposed study will have a wide range of applicability in the area
of three dimensional dynamics and control of large flexible space
structures.
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5. CONCLUDING COMMENTS

The analysis and design of optimal LQG digital shape and orientation
control for an orbiting shallow spherical shell system has been
studied. In designing for the placement of the controller and ob"
server poles, it is seen that the minimum modulus of the eigenvalues
of the closed-loop observer system must be less than the minimum
modulus of the elgenvalues of the closed-loop controller, so that
the observer can provide for a timely accurate estimate of the state
variables for the controller.

The problem of determining the number and location of the actuators
is also studied by means of three concept definitions for the degree
of controllability. These definitions are based on the scalar
measure of the controllability Grammian matrix for discrete'time
systems, and are interpreted both physically and geometrically. LQG
transient responses for several combinations of actuator placements
verify the concept of degree of controllability in selecting the
number and locations of the actuators.

This work is also being extended to the analysis and design of opti-
mal LQR digital shape and orientation control of flexible orbiting
platform systems.

It is suggested that future related research should concentrate on
the development of practical design methods for ensuring the robust
control of sampled data large flexible space systems. The main ob-
Jective should be to guarantee a certain minimum level of perform-
ance and stability robustness in the presence of variations from the
ideal design conditions, and under the influence of unmodelled (or
incompletely modelled) disturbances. Specific applications to the
dynamics and control of the orbiting shallow spherical shell and
platform system could be emphasized.
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APPENDIX

SEVERAL PROOFS FOR THE DEGREE OF CONTROLLABILITY PROBLEM

1. The Proof of Invariability of the Degree of Controllability
Under Orthogonal Linear Transformation

It is supposed that the linear discrete-time system is as follows:

xk - OXk.l + ruke-1 (Al)

let xk = Lxk (A2)

where

L = orthogonal linear transformation

The equation of the new system after linear transformation is as
follows:

Xk = *xk.41 + ruk.Gl (A3)

where

4 = L'I0L = LTOL, L"1 r = LTr =

The controllability matrix for the system (Al) is

Pc = (r : tr : (2r : ... on- 1 r) (A4)

The degree of controllability matrix Wc is

We = PCPCT = rrT + orrTi.T + ... + •n•1rrT(,n'1)T

The controllability matrix for the system (A3) is

Pc (r:= r: 2 r: ... : ,n'lr) = ...

(L' CL) L'I L) .. (L-I0L)L-Ir)

= L" 1 (r:¢r :.. . : cn"Ir) = L- 1Pc

The degree of controllability matrix for the system (A3), We, is as
follows:

4~ TWc = c rc = L-IPoP L (A5)

As we know, the eigenvalues of a matrix are invariant under a simil
larily transformation, i.e.,

A(We) = A(L'lPcPcTL) = A(PePcT) = A(Wc) (A6)
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Therefore, the degree of controllability is also invariant under a
similarity transformation, i.e.,

ii(Wc) - ii(wc) (i - 1, 2, 3) (AT)

2. The Proof of the General Properties (a) - (d) for the Degree of
Controllability Vi(Wc) (I - 1, 2, 3)

(1) The case for ul

It is evident that the properties (a) - (c) for w1 are true. What
we need to prove is property (d). That the property (d) is true is
due to the following facts.

If We =Wl + Wc2; Wel, Wc2cWc, then

I'1(Wc) - Amin(Wc) - Min <WcX,X> Mint <WcIX,X>Il x I I ' al I I 1
xeRn

+ <Wc 2 X,X>1 > Min <WcIX,X> + Min <Wc 2 X,X>IlIx I I " 'l IIx I I " -
Amin(WcIX)+Amin(Wc2)= uI(Wcl)+uI(Wc2) (AU)

(2) The case for W2

Because the trace of a positive definite symmetrical matrix is invar-
iant under a similarity transformation, it is evident that the
properties (a) - (c) are true. The proof of property (d) for U2 is
as follows.

Based on the definition of V2, what we want to prove is the follow-
ing inequality:

n > n n
c)trWcT trWc, trWc2- U2(Wci) + u2 (Wc2) (A9)

where Wcl, Wc2 C We Wc- Wcl + Wc2

It is well known that

We'] AdjWc/det Wc

then

n
trWc I - Z detWc(i)/detWc WAO)

[=1

where detWc(i) is the determinant of the ith principal minor of the
matrix WC. Considering Eq. (AIO), the inequality (A9) we want to
prove will become
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n > n +n
n det(Wcl(i)+W0 2(i)) n detWeci)- n d e-T T-771 (All)

1.1 det(Wcl W0 2 ) J. detW~l 101 dW 2

From the well known Bergstrom inequality ERi], we have

det(W.,1+W~,2) > detwj + detW,.2 (A12)
4det(Wcl(i)+Wc2(i)) detW0 1(i detWc2 (i)

From (A12). we have

det(Wr,l(i) + Wc.p(i)) < 1
det(Wcl + Wc2) detWfjde~n

then we also have

n det(Wci(i)+Wc2 (i)) < n detW0 1  detW.2  .- A3
X (dtc i + e

i.e.

n det (W01 Ci )+Wc2( 1)) > n detWci detWc2(A4(Z detCW~l 2 -' ( I fie-tWi(i) + detWc2(i)' ~ (14

Because the detWcl/detWcl(i), detWc2 /detW0 2 (i) are all real numbers,
by applying the Minkowsk! Inequality [R21

n detW0 1  detWc2

n detW ' n detWc2

(det(Wci(i)~ I. detW...2 (i ~ =(A51='1 d t W l ) 
e 

1 =1(i

(n detWci(i) + n detWc 2 (i)
SdetW 0 1 1 detW02

Substituting (A15) into inequality (A14), we have

n etWli+C 2 (i)) n detW0 1 (j) n detWc2 (i))-

det(Wcl+Wc2 ) )1 detW0  ).'l + detW0

(A16)
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If the two sides of inequality (A161 are multiplied by n, the result

is just what we need, (All).

(3) The case for P3

It is evident that the properties (a) - (c) for U3 are true due
directly to the definition of U3- Based on the Oppenheim inequality
[R1], we have

(det(Wcl + Wc2)) 1/n > (detWcl)l/n + (detWc2) l/n (AIT)

This is just what we want to show property (d) for P3, i.e.,

13 C(Wel + Wc2) > IJ3 (Wci) + Uc(Wc2) (A18)
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